Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Front Microbiol ; 15: 1344914, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38585695

RESUMO

Although the incidence of Mycobacterium abscessus infection has recently increased significantly, treatment is difficult because this bacterium is resistant to most anti-tuberculosis drugs. In particular, M. abscessus is often resistant to available macrolide antibiotics, so therapeutic options are extremely limited. Hence, there is a pressing demand to create effective drugs or therapeutic regimens for M. abscessus infections. The aim of the investigation was to assess the capability of isoegomaketone (iEMK) as a therapeutic option for treating M. abscessus infections. We determined the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of iEMK for both reference and clinically isolated M. abscessus strains. In addition to time-kill and biofilm formation assays, we evaluated iEMK's capability to inhibit M. abscessus growth in macrophages using an intracellular colony counting assay. iEMK inhibited the growth of reference and clinically isolated M. abscessus strains in macrophages and demonstrated effectiveness at lower concentrations against macrophage-infected M. abscessus than when used to treat the bacteria directly. Importantly, iEMK also exhibited anti-biofilm properties and the potential to mitigate macrolide-inducible resistance, underscoring its promise as a standalone or adjunctive therapeutic agent. Overall, our results suggest that further development of iEMK as a clinical drug candidate is promising for inhibiting M. abscessus growth, especially considering its dual action against both planktonic bacteria and biofilms.

2.
J Phys Chem B ; 128(10): 2528-2536, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38422507

RESUMO

Evaluation of the insulating properties of polymers, such as the dielectric constant and dissipation factor, is crucial in electronic devices, including field-effect transistors and wireless communication applications. This study applies density functional theory (DFT) to predict the dielectric constant of soluble polyimides (SPIs). Various SPIs containing trifluoromethyl groups in the backbone with different pendant types, numbers, and symmetries are successfully synthesized, and their dielectric constants are evaluated and compared with the DFT-estimated values. Two types of DFT-optimized SPIs, single-chain and stacked-chain models, are used to describe the local geometries of the SPIs. In addition, to reveal the relationship between the molecular structure and dielectric constant, further investigations are conducted by considering the dielectric constant of composing ionic and electronic components. The DFT-estimated static dielectric constant of the single-chain model accurately reproduces the corresponding experimental value with at least 80% accuracy. Our approach provides a rational and accelerated strategy to evaluate polymer insulators for electronic devices based on cost-effective DFT calculations.

3.
Clin Lung Cancer ; 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38310035

RESUMO

INTRODUCTION: Dual inhibition with a T-cell immunoreceptor with immunoglobulin and ITIM domains plus programmed death (ligand)-1 (PD[L]-1) inhibitors, with or without chemotherapy, is an emerging therapeutic strategy in metastatic non-small cell lung cancer (mNSCLC). The STAR-121 (NCT05502237) phase III, global, randomized, open-label study will investigate first-line domvanalimab (anti-TIGIT) and zimberelimab (anti-PD-1) plus chemotherapy versus pembrolizumab plus chemotherapy in mNSCLC with no actionable gene alterations. PARTICIPANTS AND METHODS: Approximately 720 participants (≥18 years old) with untreated mNSCLC and no EGFR and ALK mutations will be randomized into 3 groups (A, B, or C) in a 4:4:1 ratio and stratified by baseline PD-L1 expression (tumor cells <50% vs. ≥50%), histology (squamous vs. nonsquamous), and geographic region (East Asia vs. non-East Asia). Group A will receive domvanalimab 1200 mg plus zimberelimab 360 mg plus platinum-doublet chemotherapy (PT), group B will receive pembrolizumab 200 mg plus PT, and group C will receive zimberelimab 360 mg plus PT, every 3 weeks. Treatment will be administered until disease progression or intolerable toxicity. Dual primary endpoints are progression-free survival (by blinded independent central review [BICR]) and overall survival for group A versus B. Key secondary endpoints comprise overall response rate (by BICR), safety, and quality of life. Exploratory endpoints include efficacy and safety between groups A and C, pharmacokinetics, patient-reported outcomes, and biomarkers. CONCLUSION: Enrollment in the STAR-121 study commenced on October 12, 2022, and is currently ongoing with completion planned by September 2024. The study completion is expected by December 2027.

4.
Int J Mol Sci ; 24(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38069324

RESUMO

Tissue-specific gene expression generates fundamental differences in the function of each tissue and affects the characteristics of the tumors that are created as a result. However, it is unclear how much the tissue specificity is conserved during grafting of the primary tumor into an immune-compromised mouse model. Here, we performed a comparative RNA-seq analysis of four different primary-patient derived xenograft (PDX) tumors. The analysis revealed a conserved RNA biotype distribution of primary-PDX pairs, as revealed by previous works. Interestingly, we detected significant changes in the splicing pattern of PDX, which was mainly comprised of skipped exons. This was confirmed by splicing variant-specific RT-PCR analysis. On the other hand, the correlation analysis for the tissue-specific genes indicated overall strong positive correlations between the primary and PDX tumor pairs, with the exception of gastric cancer cases, which showed an inverse correlation. These data propose a tissue-specific change in splicing events during PDX formation as a variable factor that affects primary-PDX integrity.


Assuntos
Processamento Alternativo , Neoplasias Gástricas , Animais , Camundongos , Humanos , Neoplasias Gástricas/patologia , Splicing de RNA/genética , Análise de Sequência de RNA
5.
Front Pharmacol ; 14: 1302227, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38099147

RESUMO

Introduction: Metabolism-associated fatty liver disease (MAFLD) is a global health concern because of its association with obesity, insulin resistance, and other metabolic abnormalities. Methylsulfonylmethane (MSM), an organic sulfur compound found in various plants and animals, exerts antioxidant and anti-inflammatory effects. Here, we aimed to assess the anti-obesity activity and autophagy-related mechanisms of Methylsulfonylmethane. Method: Human hepatoma (HepG2) cells treated with palmitic acid (PA) were used to examine the effects of MSM on autophagic clearance. To evaluate the anti-obesity effect of MSM, male C57/BL6 mice were fed a high-fat diet (HFD; 60% calories) and administered an oral dose of MSM (200 or 400 mg/kg/day). Moreover, we investigated the AMP-activated protein kinase (AMPK)/mechanistic target of rapamycin complex 1 (mTORC1)/UNC-51-like autophagy-activating kinase 1 (ULK1) signaling pathway to further determine the underlying action mechanism of MSM. Results: Methylsulfonylmethane treatment significantly mitigated PA-induced protein aggregation in human hepatoma HepG2 cells. Additionally, Methylsulfonylmethane treatment reversed the PA-induced impairment of autophagic flux. Methylsulfonylmethane also enhanced the insulin sensitivity and significantly suppressed the HFD-induced obesity and hepatic steatosis in mice. Western blotting revealed that Methylsulfonylmethane improved ubiquitinated protein clearance in HFD-induced fatty liver. Remarkably, Methylsulfonylmethane promoted the activation of AMPK and ULK1 and inhibited mTOR activity. Conclusion: Our study suggests that MSM ameliorates hepatic steatosis by enhancing the autophagic flux via an AMPK/mTOR/ULK1-dependent signaling pathway. These findings highlight the therapeutic potential of MSM for obesity-related MAFLD treatment.

6.
Pathogens ; 12(12)2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38133329

RESUMO

Mycobacterium peregrinum (Mpgm) is a rapidly growing mycobacteria that is classified as a nontuberculous mycobacterium (NTM) and is commonly found in environmental sources such as soil, water, and animals. Mpgm is considered an opportunistic pathogen that causes infection in immunocompromised individuals or those with underlying medical conditions. Although there have been clinical reports on Mpgm, reports of the immune response and metabolic reprogramming have not been published. Thus, we studied standard Mpgm-ATCC and two clinical strains (Mpgm-S and Mpgm-R) using macrophages and mouse bone marrow-derived cells. Mpgm has two types of colony morphologies: smooth and rough. We grew all strains on the 7H10 agar medium to visually validate the morphology. Cytokine levels were measured via ELISA and real-time PCR. The changes in mitochondrial function and glycolysis in Mpgm-infected macrophages were measured using an extracellular flux analyzer. Mpgm-S-infected macrophages showed elevated levels of inflammatory cytokines, including interleukin (IL)-6, IL-12p40, and tumor necrosis factor (TNF)-α, compared to Mpgm-ATCC- and Mpgm-R-infected macrophages. Additionally, our findings revealed metabolic changes in Mpgm-ATCC and two clinical strains (Mpgm-S and Mpgm-R) during infection; significant changes were observed in the mitochondrial respiration, extracellular acidification, and the oxygen consumption of BMDMs upon Mpgm-S infection. In summary, within the strains examined, Mpgm-S displayed greater virulence, triggered a heightened immune response, and induced more profound shifts in bioenergetic metabolism than Mpgm-ATCC and Mpgm-R. This study is the first to document distinct immune responses and metabolic reorganization following Mpgm infection. These findings lay a crucial foundation for further investigations into the pathogenesis of Mpgm.

7.
iScience ; 26(6): 106982, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37378348

RESUMO

To study the ancestry and phylogenetic relationships of native Korean dog breeds to other Asian dog populations, we analyzed nucleotide variations in whole-genome sequences of 205 canid individuals. Sapsaree, Northern Chinese indigenous dog, and Tibetan Mastiff were largely related to West Eurasian ancestry. Jindo, Donggyeongi, Shiba, Southern Chinese indigenous (SCHI), Vietnamese indigenous dogs (VIET), and Indonesian indigenous dogs were related to Southeast and East Asian ancestry. Among East Asian dog breeds, Sapsaree presented the highest haplotype sharing with German Shepherds, indicating ancient admixture of European ancestry to modern East Asian dog breeds. SCHI showed greater haplotype sharing with New Guinea singing dogs, VIET, and Jindo than with other Asian breeds. The predicted divergence time of East Asian populations from their common ancestor was approximately 2,000 to 11,000 years ago. Our results expand understanding of the genetic history of dogs in the Korean peninsula to the Asian continent and Oceanic region.

8.
J Exp Biol ; 226(14)2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37334669

RESUMO

Although skeletal muscle is a specialized tissue that provides the motor for movement, it also participates in other functions, including the immune response. However, little is known about the effects of this multitasking on muscle. We show that muscle loses some of its capacity while it is participating in the immune response. Caterpillars (Manduca sexta) were exposed to an immune challenge, predator stress or a combination of immune challenge and predator stress. The expression of immune genes (toll-1, domeless, cactus, tube and attacin) increased in body wall muscle after exposure to an immune challenge. Muscle also showed a reduction in the amount of the energy storage molecule glycogen. During an immune challenge, the force of the defensive strike, an important anti-predator behaviour in M. sexta, was reduced. Caterpillars were also less able to defend themselves against a common enemy, the wasp Cotesia congregata, suggesting that the effect on muscle is biologically significant. Our results support the concept of an integrated defence system in which life-threatening events activate organism-wide responses. We suggest that increased mortality from predation is a non-immunological cost of infection in M. sexta. Our study also suggests that one reason non-immunological costs of infection exist is because of the participation of diverse organs, such as muscle, in immunity.


Assuntos
Manduca , Vespas , Animais , Manduca/fisiologia , Vespas/fisiologia , Comportamento Predatório , Músculos , Larva/metabolismo
9.
Biomater Res ; 27(1): 4, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36670488

RESUMO

BACKGROUND: Obesity, a serious threat to public health, is linked to chronic metabolic complications including insulin resistance, type-2 diabetes, and metabolic dysfunction-associated fatty liver disease (MAFLD). Current obesity medications are challenged by poor effectiveness, poor patient compliance, and potential side effects. Verapamil is an inhibitor of L-type calcium channels, FDA-approved for the treatment of hypertension. We previously investigated the effect of verapamil on modulating autophagy to treat obesity-associated lipotoxicity. This study aims to develop a verapamil transdermal patch and to evaluate its anti-obesity effects. METHODS: Verapamil is loaded in biomimetic vascular bundle-like carboxymethyl pullulan-based supramolecular hydrogel patches cross-linked with citric acid and glycerol linkages (CLCMP). The investigation was then carried out to determine the therapeutic effect of verapamil-loaded CLCMP (Vera@CLCMP) on diet-induced obese mice. RESULTS: Vera@CLCMP hydrogel patches with hierarchically organized and anisotropic pore structures not only improved verapamil bioavailability without modifying its chemical structure but also enhanced verapamil release through the stratum corneum barrier. Vera@CLCMP patches exhibit low toxicity and high effectiveness at delivering verapamil into the systemic circulation through the dermis in a sustained manner. Specifically, transdermal administration of this patch into diet-induced obese mice drastically improved glucose tolerance and insulin sensitivity and alleviated metabolic derangements associated with MAFLD. Furthermore, we uncovered a distinct molecular mechanism underlying the anti-obesity effects associated with the hepatic NLR family pyrin domain-containing 3 (NLRP3) inflammasome and autophagic clearance by the vera@CLCMP hydrogel patches. CONCLUSION: The current study provides promising drug delivery platforms for long-term family treatment of chronic diseases, including obesity and metabolic dysfunctions.

10.
Animals (Basel) ; 12(19)2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36230243

RESUMO

Gut microbiomes are well recognized to serve a variety of roles in health and disease, even though their functions are not yet completely understood. Previous studies have demonstrated that the microbiomes of juvenile and adult dogs have significantly different compositions and characteristics. However, there is still a scarcity of basic microbiome research in dogs. In this study, we aimed to advance our understanding by confirming the difference in fecal microbiome between young and adult dogs by analyzing the feces of 4-month and 16-month-old Jindo dogs, a domestic Korean breed. Microbiome data were generated and examined for the two age groups using 16S rRNA analysis. Comparison results revealed that the 16-month-old group presented a relatively high distribution of Bacteroides, whereas the 4-month-old group presented a comparatively high distribution of the Lactobacillus genus. Microbial function prediction analyses confirmed the relative abundance of lipid metabolism in 4-month-old dogs. In 16-month-old dogs, glucose metabolism was determined using microbial function prediction analyses. This implies that the functional microbiome changes similarly to the latter in adults compared with childhood. Overall, we discovered compositional and functional variations between genes of the gut microbial population in juveniles and adults. These microbial community profiles can be used as references for future research on the microbiome associated with health and development in the canine population.

11.
Immune Netw ; 22(4): e35, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36081523

RESUMO

Tobacco smoking (TS) has been known as one of the most potent risk factors for airway inflammatory diseases. However, there has been a paucity of information regarding the immunologic alteration mediated by TS in patients with chronic rhinosinusitis with nasal polyps (CRSwNP). To identify the effect of TS, we harvested human tissue samples (never smoker: n=41, current smoker: n=22, quitter: n=23) and analyzed the expression of epithelial-derived cytokines (EDCs) such as IL-25, IL-33, and thymic stromal lymphopoietin. The expressions of Th2 cytokines and total serum IgE showed a type-2 inflammatory alteration by TS. In addition, the epithelial marker E-cadherin and epithelial-mesenchymal transition (EMT)-associated markers (N-cadherin, α-SMA, and vimentin) were evaluated. Histological analysis showed that EDC expressions were upregulated in the current smoker group and downregulated in the quitter group. These expression patterns were consistent with mRNA and protein expression levels. We also found that the local Th2 cytokine expression and IgE class switching, as well as serum IgE levels, were elevated in the current smoker group and showed normal levels in the quitter group. Furthermore, the expressions of E-cadherin decreased while those of N-cadherin, α-SMA, and vimentin increased in the current smoker group compared those in the never smoker group. Taken together, these results indicate that TS contributes to the deterioration of pathogenesis by releasing local EDCs and Th2 cytokines, resulting in EMT in patients with CRSwNP. We verified that alterations of immunological response by TS in sinonasal epithelium can play a vital role in leading to CRSwNP.

12.
J Med Food ; 25(5): 503-512, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35561274

RESUMO

Salicornia herbacea L. (Chenopodiaceae), an edible salt marsh plant with anti-inflammatory effects, was examined in macrophages and trophoblasts whether it modulates NLRP3 inflammasome activity. Pretreatment and delayed treatment of S. herbacea extract (SHE) in bone marrow-derived macrophages (BMDMs) reduced the activity of NLRP3 inflammasome induced by lipopolysaccharide (LPS) and adenosine triphosphate stimulation and downregulated interleukin (IL)-1ß production. SHE also inhibited pyroptotic cell death, the adaptor molecule apoptosis-associated speck-like protein containing a CARD (ASC), oligomerization, and speck by NLRP3 inflammasome activity in BMDM. Similarly, SHE decreased the mRNA expression of NLRP3, ASC, IL-1ß, and IL-6 in the LPS-stimulated human trophoblast cell line, Swan 71 cells. In addition, SHE inhibited the production of IL-6 and IL-1ß and decreased the expression of cyclooxygenase-2 and prostaglandin E2 in stimulated Swan 71 cells. Finally, 3,5-dicaffeoylquinic acid (3,5-DCQA), one of the components of S. herbacea, inhibited IL-1ß produced by NLRP3 inflammasome activity. In conclusion, SHE downregulated the activity of the NLRP3 inflammasome in macrophages and trophoblasts.


Assuntos
Chenopodiaceae , Inflamassomos , Caspase 1/metabolismo , Caspase 1/farmacologia , Humanos , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Trofoblastos/metabolismo
13.
Int J Mol Sci ; 23(8)2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35457208

RESUMO

Ulcerative colitis is a complex inflammatory bowel disorder disease that can induce rectal and colonic dysfunction. Although the prevalence of IBD in Western countries is almost 0.5% of the general population, genetic causes are still not fully understood. In a recent discovery, itaconate was found to function as an immune-modulating metabolite in mammalian immune cells, wherein it is synthesized as an antimicrobial compound from the citric acid cycle intermediate cis-aconitic acid. However, the association between the Acod1 (Aconitate decarboxylase 1)-itaconate axis and ulcerative colitis has rarely been studied. To elucidate this, we established a DSS-induced colitis model with Acod1-deficient mice and then measured the mouse body weights, colon lengths, histological changes, and cytokines/chemokines in the colon. We first confirmed the upregulation of Acod1 RNA and protein expression levels in DSS-induced colitis. Then, we found that colitis symptoms, including weight loss, the disease activity index, and colon shortening, were worsened by the depletion of Acod1. In addition, the extent of intestinal epithelial barrier breakdown, the extent of immune cell infiltration, and the expression of proinflammatory cytokines and chemokines in Acod1-deficient mice were higher than those in wild-type mice. Finally, we confirmed that 4-octyl itaconate (4-OI) alleviated DSS-induced colitis in Acod1-deficient mice and decreased the expression of inflammatory cytokines and chemokines. To our knowledge, this study is the first to elucidate the role of the Acod1-itaconate axis in colitis. Our data clearly showed that Acod1 deletion resulted in severe DSS-induced colitis and substantial increases in inflammatory cytokine and chemokine levels. Our results suggest that Acod1 may normally play an important regulatory role in the pathogenesis of colitis, demonstrating the potential for novel therapies using 4-OI.


Assuntos
Colite Ulcerativa , Colite , Doenças Inflamatórias Intestinais , Animais , Carboxiliases , Quimiocinas/genética , Colite/induzido quimicamente , Colite/genética , Colite/patologia , Colite Ulcerativa/patologia , Colo/patologia , Citocinas/metabolismo , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Humanos , Doenças Inflamatórias Intestinais/patologia , Mamíferos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Sulfatos
14.
Int J Mol Sci ; 23(5)2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35269631

RESUMO

Mycobacterium mucogenicum (Mmuc), a rapidly growing nontuberculous mycobacterium (NTM), can infect humans (posttraumatic wound infections and catheter-related sepsis). Similar to other NTM species, Mmuc exhibits colony morphologies of rough (Mmuc-R) and smooth (Mmuc-S) types. Although there are several case reports on Mmuc infection, no experimental evidence supports that the R-type is more virulent. In addition, the immune response and metabolic reprogramming of Mmuc have not been studied on the basis of morphological characteristics. Thus, a standard ATCC Mmuc strain and two clinical strains were analyzed, and macrophages were generated from mouse bone marrow. Cytokines and cell death were measured by ELISA and FACS, respectively. Mitochondrial respiration and glycolytic changes were measured by XF seahorse. Higher numbers of intracellular bacteria were found in Mmuc-R-infected macrophages than in Mmuc-S-infected macrophages. Additionally, Mmuc-R induced higher levels of the cytokines TNF-α, IL-6, IL-12p40, and IL-10 and induced more BMDM necrotic death. Furthermore, our metabolic data showed marked glycolytic and respiratory differences between the control and each type of Mmuc infection, and changes in these parameters significantly promoted glucose metabolism, extracellular acidification, and oxygen consumption in BMDMs. In conclusion, at least in the strains we tested, Mmuc-R is more virulent, induces a stronger immune response, and shifts bioenergetic metabolism more extensively than the S-type. This study is the first to report differential immune responses and metabolic reprogramming after Mmuc infection and might provide a fundamental basis for additional studies on Mmuc pathogenesis.


Assuntos
Mycobacteriaceae , Infecções por Mycobacterium não Tuberculosas , Infecções por Mycobacterium , Animais , Citocinas/metabolismo , Imunidade , Macrófagos/metabolismo , Camundongos , Infecções por Mycobacterium/metabolismo , Infecções por Mycobacterium não Tuberculosas/microbiologia
15.
Int J Mol Sci ; 24(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36614128

RESUMO

Breast cancer in women is one of the most common life-threatening malignancies. Despite of the development for the improved treatment, there are still many limitations to overcome. Among them, cancer stem cells (CSCs) are well known for tumor formation, development, cellular heterogeneity, and cancer recurrence. Therefore, to completely cure breast cancer, treatment of both cancer and CSC is required. To selectively target CSCs, we generated a liposome-based smart nano complex using CEACAM 6 (CD66c) antibody (Ab), a novel cell-surface biomarker of breast-derived CSCs (BCSCs) discovered in our previous research. Selective and increased cellular uptake was observed in BCSCs treated with CD66c Ab-conjugated rhodamine-labeled liposomes (CDRHOL) depending on the expression level of CD66c. CD66c Ab-conjugated doxorubicin (DOX)-loaded liposomes (CDDOXL) selectively showed increased cell killing effects in BCSCs with high CD66c expression levels. In an in vivo animal study, CDRHOL showed enhanced accumulation in xenografted BCSC tumors with low delivery into non-target organs. Moreover, mice treated with CDDOXL have assessed the decreased induction ability of immune response by low expression levels of pro-inflammatory cytokines and reduced liver toxicity by histopathological analysis. Finally, the improved antitumor effect of CDDOXL was evaluated in a metastatic BCSC mouse model via systemic administration. Collectively, our study is the first to demonstrate that a multi-functional nano complex using a novel surface biomarker of BCSC may be a more effective therapeutic agent for the treatment of cancer and CSCs.


Assuntos
Lipossomos , Recidiva Local de Neoplasia , Feminino , Camundongos , Animais , Lipossomos/metabolismo , Recidiva Local de Neoplasia/patologia , Biomarcadores/metabolismo , Células-Tronco Neoplásicas/metabolismo , Linhagem Celular Tumoral
16.
Front Immunol ; 12: 743700, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34858401

RESUMO

Pathological maternal inflammation and abnormal placentation contribute to several pregnancy-related disorders, including preterm birth, intrauterine growth restriction, and preeclampsia. TANK-binding kinase 1 (TBK1), a serine/threonine kinase, has been implicated in the regulation of various physiological processes, including innate immune response, autophagy, and cell growth. However, the relevance of TBK1 in the placental pro-inflammatory environment has not been investigated. In this study, we assessed the effect of TBK1 inhibition on lipopolysaccharide (LPS)-induced NLRP3 inflammasome activation and its underlying mechanisms in human trophoblast cell lines and mouse placenta. TBK1 phosphorylation was upregulated in the trophoblasts and placenta in response to LPS. Pharmacological and genetic inhibition of TBK1 in trophoblasts ameliorated LPS-induced NLRP3 inflammasome activation, placental inflammation, and subsequent interleukin (IL)-1 production. Moreover, maternal administration of amlexanox, a TBK1 inhibitor, reversed LPS-induced adverse pregnancy outcomes. Notably, TBK1 inhibition prevented LPS-induced NLRP3 inflammasome activation by targeting the mammalian target of rapamycin complex 1 (mTORC1). Thus, this study provides evidence for the biological significance of TBK1 in placental inflammation, suggesting that amlexanox may be a potential therapeutic candidate for treating inflammation-associated pregnancy-related complications.


Assuntos
Inflamassomos/imunologia , Alvo Mecanístico do Complexo 1 de Rapamicina/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Complicações na Gravidez/imunologia , Proteínas Serina-Treonina Quinases/imunologia , Trofoblastos/imunologia , Animais , Feminino , Humanos , Inflamação/induzido quimicamente , Inflamação/imunologia , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Placenta/imunologia , Placenta/metabolismo , Gravidez , Complicações na Gravidez/metabolismo , Trofoblastos/metabolismo
17.
Animals (Basel) ; 11(11)2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34827868

RESUMO

As a companion and hunting dog, height, length, length to height ratio (LHR) and body-weight are the vital economic traits for Jindo dog. Human selection and targeted breeding have produced an extraordinary diversity in these traits. Therefore, the identification of causative markers, genes and pathways that help us to understand the genetic basis of this variability is essential for their selection purposes. Here, we performed a genome-wide association study (GWAS) combined with enrichment analysis on 757 dogs using 118,879 SNPs. The genomic heritability (h2) was 0.33 for height and 0.28 for weight trait in Jindo. At p-value < 5 × 10-5, ten, six, thirteen and eleven SNPs on different chromosomes were significantly associated with height, length, LHR and body-weight traits, respectively. Based on our results, HHIP, LCORL and NCAPG for height, IGFI and FGFR3 for length, DLK1 and EFEMP1 for LHR and PTPN2, IGFI and RASAL2 for weight can be the potential candidate genes because of the significant SNPs located in their intronic or upstream regions. The gene-set enrichment analysis highlighted here nine and seven overlapping significant (p < 0.05) gene ontology (GO) terms and pathways among traits. Interestingly, the highlighted pathways were related to hormone synthesis, secretion and signalling were generally involved in the metabolism, growth and development process. Our data provide an insight into the significant genes and pathways if verified further, which will have a significant effect on the breeding of the Jindo dog's population.

18.
Front Immunol ; 12: 594356, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34248925

RESUMO

Background: The coronavirus-19 disease (COVID-19) pandemic reminds us of the importance of immune function, even in immunologically normal individuals. Multiple lifestyle factors are known to influence the immune function. Objective: The aim was to investigate the association between NK cell activity (NKA) and multiple factors including vitamin D, physical exercise, age, and gender. Methods: This was a cross-sectional association study using health check-up and NKA data of 2,095 subjects collected from 2016 to 2018 in a health check-up center in the Republic of Korea. NKA was measured using the interferon-γ (IFN-γ) stimulation method. The association of NKA with 25-(OH)-vitamin D (25(OH)D) and other factors was investigated by multiple logistic regression analysis. Results: The average age of subjects was 48.8 ± 11.6 years (52.9% of subjects were female). Among 2,095 subjects, 1,427 had normal NKA (NKA ≥ 500 pg IFN-γ/mL), while 506 had low NKA (100 ≤ NKA < 500 pg/mL), and 162 subjects had very low NKA (NKA < 100 pg/mL). Compared to men with low 25(OH)D serum level (< 20 ng/mL), vitamin D replete men (30-39.9 ng/mL) had significantly lower risk of very low NKA (OR: 0.358; 95% CI: 0.138, 0.929; P = 0.035). In women, both low exercise (OR: 0.529; 95% CI: 0.299, 0.939; P = 0.030) and medium to high exercise (OR: 0.522; 95% CI: 0.277, 0.981; P = 0.043) decreased the risk compared to lack of physical exercise. Interestingly, in men and women older than 60 years, physical exercise significantly decreased the risk. Older-age was associated with increased risk of very low NKA in men, but not in women. Conclusion: Physical exercise and vitamin D were associated with NKA in a gender- and age-dependent manner. Age was a major risk factor of very low NKA in men but not in women.


Assuntos
Fatores Etários , COVID-19/imunologia , Exercício Físico , Células Matadoras Naturais/imunologia , SARS-CoV-2/fisiologia , Fatores Sexuais , Vitamina D/sangue , Adulto , COVID-19/epidemiologia , Células Cultivadas , Estudos Transversais , Feminino , Nível de Saúde , Humanos , Imunidade Inata , Imunocompetência , Interferon gama/metabolismo , Ativação Linfocitária , Masculino , Pessoa de Meia-Idade , República da Coreia/epidemiologia
19.
Nanomaterials (Basel) ; 11(2)2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33573005

RESUMO

Highly luminescent europium complexes modified mesoporous silica particles (MSP) were synthesized as an imaging probes for both in-vitro diagnostic and in-vivo cellular tracking agents. Europium ß-diketone chelates (4,4,4-trifluoro-l-(2-thienyl)-l,3-butanedione) trioctylphosphine europium (III) (Eu(TTA)3(P(Oct)3)3) were incorporated inside the nanocavities that existed in hierarchical MSP (Eu@MSP). The MSP and Eu@MSP on mouse bone marrow-derived macrophages (BMDMs) did not show any toxic effect. The MSP and Eu@MSP in the BMDMs were found at cytoplasm without any degradation and immunogenicity. However, both pro- and anti-inflammatory cytokines of macrophages were significantly increased when lipopolysaccharide and a high concentration (100 µg/mL) of MSP and Eu@MSP were treated simultaneously.

20.
Free Radic Biol Med ; 164: 233-248, 2021 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-33422674

RESUMO

Biological aging provokes morbidity and several functional declines, causing older adults more susceptible to a variety of diseases than younger adults. In particular, aging is a major risk factor contributing to non-communicable diseases, such as neurodegenerative disorders. Alzheimer's disease (AD) is an aging-related neurodegenerative disease that is characterized by cognitive deficits and the formation of amyloid plaques formed by the accumulation of amyloid-ß (Aß) peptides. Non-saponin fraction with rich polysaccharide (NFP) from red ginseng, the largest fraction of the components of red ginseng, perform many biological activities. However, it has not been clarified whether the NFP from Korean red ginseng (KRG) has beneficial effects in the aging and AD. First, proteomics analysis was performed in aged brain to identify the effect of NFP on protein changes, and we confirmed that NFP induced changes in proteins related to the neuroprotective- and neurogenic-effects. Next, we investigated (1) the effects of NFP on AD pathologies, such as Aß deposition, neuroinflammation, neurodegeneration, mitochondrial dysfunction, and impaired adult hippocampal neurogenesis (AHN), in 5XFAD transgenic mouse model of AD using immunostaining; (2) the effect of NFP on Aß-mediated mitochondrial respiration deficiency in HT22 mouse hippocampal neuronal cells (HT22) using Seahorse XFp analysis; (3) the effect of NFP on cell proliferation using WST-1 analysis; and (4) the effect of NFP on Aß-induced cognitive dysfunction in 5XFAD mouse model of AD using Y-maze test. Histological analysis indicated that NFP significantly alleviated the accumulation of Aß, neuroinflammation, neuronal loss, and mitochondrial dysfunction in the subiculum of 5XFAD mouse model of AD. In addition, NFP treatment ameliorated mitochondrial deficits in Aß-treated HT22 cells. Moreover, NFP treatment significantly increased the AHN and neuritogenesis of neural stem cells in both healthy and AD brains. Furthermore, NFP significantly increased cell proliferation in the HT22 cells. Finally, NFP administration significantly enhanced and restored the cognitive function of healthy and AD mice, respectively. Taken together, NFP treatment demonstrated changes in proteins involved in central nervous system organization/maintenance in aged brain and ameliorates AD pathology. Collectively, our findings suggest that NFP from KRG could be a potential therapeutic candidate for aging and AD treatments.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Panax , Envelhecimento , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Polissacarídeos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...